Transition to Flowering and Morphogenesis of Reproductive Structures in Tomato
نویسندگان
چکیده
Flowering in tomato (Solanum lycopersicum L.) has long been investigated by plant physiologists and horticulturists aiming to increase productivity of this important fruit crop. The disruption of the sequence of events which give rise to normal development of the reproductive structures by either the manipulation of the environment, hormones or mutations has provided information useful to unravel the complexity of the implicated mechanisms. In this paper, we focus on the early stages of the flowering process, analysing how flowering time and reproductive morphogenesis are regulated. Development of the reproductive structures up to anthesis, having been reviewed on several occasions in the past, is not considered. Tomato is an autonomously flowering plant with a sympodial growth habit, which means that it flowers repeatedly, at the top of an initial segment and of successive sympodial segments. The nature of its reproductive structure, a raceme or a cyme, is still questioned but available evidence supports the view that the tomato inflorescence is racemose. Flowering time is strongly dependent on the daily light energy integral and is regulated by an array of genes among which SINGLE FLOWER TRUSS (SFT) and SELF PRUNING (SP) play a major role. SFT is a flowering promoter particularly active in the initial segment while SP regulates sympodial development by controlling the regularity of the vegetative-reproductive switch of the different sympodial segments. Many genes specifying the identity of the meristems and floral organs interact to regulate the morphogenesis of the reproductive structures, opening a large field for future investigations. _____________________________________________________________________________________________________________
منابع مشابه
Characterization of tomato (Solanum lycopersicum L.) mutants affected in their flowering time and in the morphogenesis of their reproductive structure.
The impact of the season on flowering time and the organization and morphogenesis of the reproductive structures are described in three tomato mutants: compound inflorescence (s), single flower truss (sft), and jointless (j), respectively, compared with their wild-type cultivars Ailsa Craig (AC), Platense (Pl), and Heinz (Hz). In all environmental conditions, the sft mutant flowered significant...
متن کاملUniversal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato.
The transition from vegetative to floral meristems in higher plants is programmed by the coincidence of internal and environmental signals. Classic grafting experiments have shown that leaves, in response to changing photoperiods, emit systemic signals, dubbed 'florigen', which induce flowering at the shoot apex. The florigen paradigm was conceived in photoperiod-sensitive plants: nevertheless ...
متن کاملEvaluation of Effect of Improved Trichoderma inocula on Flowering and Crop Productivity of Bean
The transition from the vegetative phase to reproductive phase is the most important event in production and genetic innovation. This phenomenon is influenced by many genetic and environmental factors in plants. According to studies carried out in this field, one of the environmental factors affects the reproductive and flowering process is Trichoderma species, which is abundant in soil. This s...
متن کاملThe SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1.
Vegetative and reproductive phases alternate regularly during sympodial growth in tomato. In wild-type 'indeterminate' plants, inflorescences are separated by three vegetative nodes. In 'determinate' plants homozygous for the recessive allele of the SELF-PRUNING (SP) gene, sympodial segments develop progressively fewer nodes until the shoot is terminated by two consecutive inflorescences. We sh...
متن کاملEffects of acute ozone stress on reproductive traits of tomato, fruit yield and fruit composition.
BACKGROUND Tomato is sensitive to ozone. Fruit growth and composition are altered under ozone stress by modification of reproductive development. Fifty-one-day-old plants were exposed to three concentrations of ozone (200, 350 and 500 µg m(-3)) for 4 h. RESULTS Ozone reduced well-developed fruit number and fruit size, but it did not significantly affect flowering rate and fruit setting rate. ...
متن کامل